Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3945023

ABSTRACT

Clinical and hyperinflammatory overlap between COVID-19 and hemophagocytic lymphohistiocytosis (HLH) has been reported. However, the underlying mechanisms are unclear. Here we show that COVID-19 and HLH have an overlap of signaling pathways and gene signatures commonly dysregulated, which were defined by investigating the transcriptomes of 1253 subjects (controls, COVID-19, and HLH patients) using microarray, bulk RNA-sequencing (RNAseq), and single-cell RNAseq (scRNAseq). COVID-19 and HLH share pathways involved in cytokine and chemokine signaling as well as neutrophil-mediated immune responses that associate with COVID-19 severity. These genes are dysregulated at protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins which converge to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.Funding: We acknowledge the Latin American Society of Immunodeficiencies (LASID) for providing the research funding of LFS (LASID Fellowship award 2020), and the São Paulo Research Foundation (FAPESP grants 2018/18886-9, 2020/01688-0, and 2020/07069-0 to OCM) for financial support. Computational analysis was supported by FAPESP and partially by the grants from Ontario Research Fund (#34876), Natural Sciences Research Council (NSERC #203475), Canada Foundation for Innovation (CFI #29272, #225404, #33536), and IBM granted to IJ, the National Institutes of Health (NHLBI) through award HL130704 granted to AJ, as well as the NIH P4 GM108538 granted to KAO and JJC. This study was financed in part by the coordination for the improvement of higher education personnel – Brazil (CAPES) – finance code 001.Declaration of Interests: The authors have declared that no conflict of interest exists.


Subject(s)
Smear Layer , Lymphohistiocytosis, Hemophagocytic , Immunologic Deficiency Syndromes , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.30.454529

ABSTRACT

Clinical and hyperinflammatory overlap between COVID-19 and hemophagocytic lymphohistiocytosis (HLH) has been reported. However, the underlying mechanisms are unclear. Here we show that COVID-19 and HLH have an overlap of signaling pathways and gene signatures commonly dysregulated, which were defined by investigating the transcriptomes of 1253 subjects (controls, COVID-19, and HLH patients) using microarray, bulk RNA-sequencing (RNAseq), and single-cell RNAseq (scRNAseq). COVID-19 and HLH share pathways involved in cytokine and chemokine signaling as well as neutrophil-mediated immune responses that associate with COVID-19 severity. These genes are dysregulated at protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins which converge to neutrophil hyperactivation in COVID-19 patients admitted to intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.


Subject(s)
COVID-19 , Lymphohistiocytosis, Hemophagocytic
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.12.20230417

ABSTRACT

The coronavirus disease 2019 (COVID-19) fatality rate varies in different patient groups. However, the underlying mechanisms that explain this variation are poorly understood. Here, we reanalyzed and integrated public RNAseq datasets of nasopharyngeal swabs and peripheral blood leukocytes from patients with SARS-CoV-2, comparing transcription patterns according to sex, age, and viral load. We found that female and young patients infected by SARS-CoV-2 exhibited a similar transcriptomic pattern with a larger number of total (up- and downregulated) differentially expressed genes (DEGs) compared to males and elderly patients. The transcriptional analysis showed a sex-specific profile with a higher transcriptional modulation of immune response-associated genes in female and young subjects against SARS-CoV-2. The functional clustering was characterized by a highly correlated interferome network of cytokine/chemokine- and neutrophil-associated genes that were enriched both in nasopharyngeal cells and peripheral blood of COVID-19 patients. Females exhibited reduced transcriptional levels of key pro-inflammatory/neutrophil-related genes such as CXCL8 receptors (CXCR1/CXCR2), IL-1{beta}, S100A9, ITGAM, and DBNL compared to males, which correlate with a protective gene expression profile against inflammatory damage. Our data indicate specific immune-regulatory pathways associated with sex and age of patients infected with SARS-CoV-2. These results point out therapeutic targets to reduce morbidity and mortality of COVID-19.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.16.153817

ABSTRACT

The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spurred a wave of research of nearly unprecedented scale. Among the different strategies that are being used to understand the disease and develop effective treatments, the study of physical molecular interactions enables studying fine-grained resolution of the mechanisms behind the virus biology and the human organism response. Here we present a curated dataset of physical molecular interactions, manually extracted by IMEx Consortium curators focused on proteins from SARS-CoV-2, SARS-CoV-1 and other members of the Coronaviridae family. Currently, the dataset comprises over 2,200 binarized interactions extracted from 86 publications. The dataset can be accessed in the standard formats recommended by the Proteomics Standards Initiative (HUPO-PSI) at the IntAct database website (www.ebi.ac.uk/intact), and will be continuously updated as research on COVID-19 progresses.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL